

The Forever Green Agriculture Initiative Developing High-Efficiency Agriculture and Food Systems

Donald Wyse, PhD

Professor, Department of Agronomy and Plant Genetics
Co-Director, Forever Green Initiative
University of Minnesota

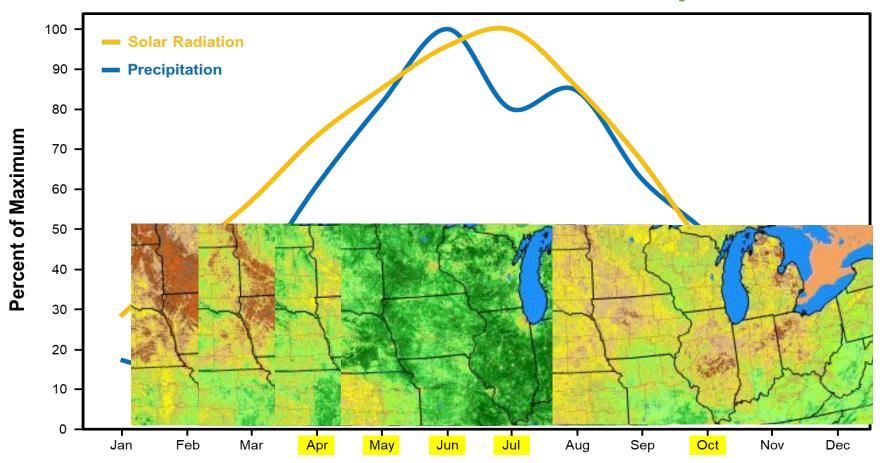
wysex001@umn.edu

651.470.9878

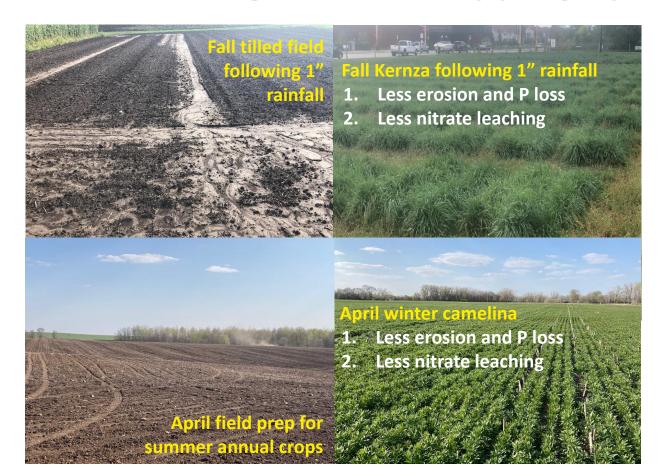
Forever Green Initiative

- Develop winter-annual and perennial crops for inclusion in existing cropping systems
- Provide "continuous living cover" on the soil
- Protect soil and water resources
- Create new economic opportunities for farmers and rural communities

New Food/Feed/Fuel Ingredients



New Economic Opportunities



Ecosystem Services

Current Seasonal Midwest Landscape Cover

"Continuous Living Cover" Cropping Systems

Forever Green Crops Provide: New, Unique Food, Feed and Energy Products for Commercialization

Oils

Fiber

Protein

Phytonutrients

Forever Green Crops Provide: New Economic Opportunities

High Value Food, Feed and Energy Ingredients

Green Marketing: Ecosystem Services,
Greenhouse Gas Reduction

Innovative Healthy Food Products

New Economic Opportunities for Farmers and Rural Communities

Forever Green Crops Provide: Environmental Services

- Rural well water protection
- Clean lakes and streams
- Nutrient management
- Pollinator habitat
- Wildlife habitat
- Carbon sequestration
- Soil protection
- Soil health
- Weed suppression

How do we get these plants on the landscape?

Collaboration across disciplines in both public and private sectors

Plant Breeding and Genomics

Agronomics
Soil & Water Science

Food Science & Bioproducts

Commercialization

Supply Chain Development

University of Minnesota | Forever Green |

Perennial Crops

- Kernza[®] intermediate wheatgrass grain, forage, biomass
- Perennial sunflower edible seeds, oil & protein
- Native polyculture grassland mixtures – biomass, forage natural products
- **Perennial flax** edible oil and protein
- **Kura clover** N-fixing cover crop
- **Silphium** edible oil and protein
- Alfalfa food grade protein and feed
- Perennial cereal rye food and feed grain

Winter Annual Crops

- Pennycress edible oil & protein, biofuel
- Camelina edible oil & protein, biofuel
- Winter barley food, malting barley
- **Hairy vetch** N-fixing cover crop
- Winter and spring field pea food grade protein
- Winter hybrid rye—food and feed grain

Native Woody Crops

- Hazelnuts edible nut with oil/protein
- Shrub willow biomass
- Elderberry antioxidant-rich fruit
- Agroforestry woody, herbaceous crop mixtures for feed, food, and fuel

Forever Green Crops: From Research To Field To Table & Beyound

Photos: Mette Nielsen

Brief summary of outcomes supported in part by previous State of Minnesota Funds

- State funds leveraged 5-fold
- 16 coordinated Forever Green crop development platforms
- MN-Clearwater Kernza® variety
- Winter barley variety
- Winter-hardy hairy vetch variety
- 6 hazelnut lines for on-farm evaluation
- Short-season winter camelina line
- Domesticated pennycress, a winter-hardy oilseed crop
- Coordination of FGI with MN communities, seed companies, farmers, grain processors, and commercialization and supply chain network

Intermediate Wheatgrass or Kernza®

Thinopyrum intermedium

Perennial grass with high biomass and large grain size

Enterprises:

- •Beer/Whiskey
- Food
- Biomass
- Grazing

Funding: IREE, MDA, Forever Green Initiative, The Land Institute

Annual wheat (on left in each panel) and Perennial wheatgrass

Intermediate Wheatgrass: Attributes

Large seeds

• 10-15g/1000 seeds

Grazing potential

- Fall and spring grazing
- High forage quality
- Grazing helps maintain grain yield

Large biomass

 Comparable to big bluestem and switchgrass

Disease resistance

Lr38, Sr43, Sr44, Pm40, Pm43...

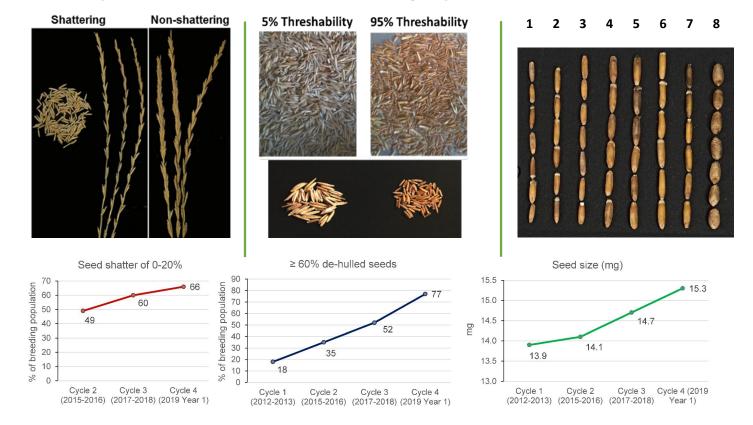
Favorable end-use food

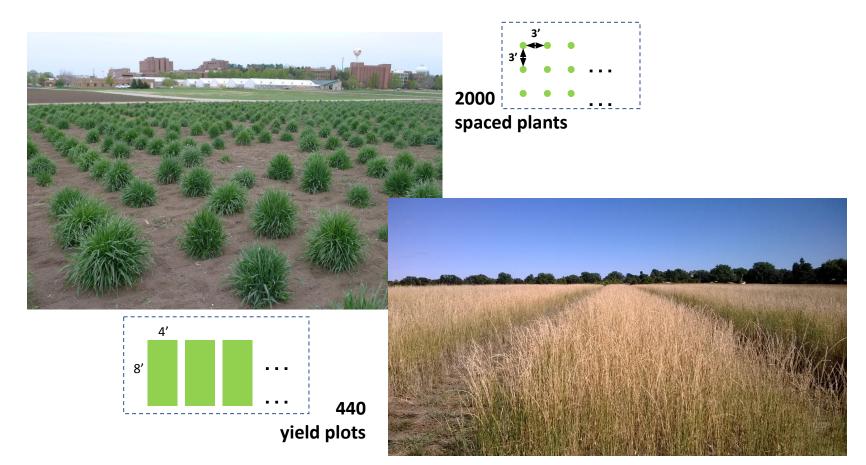
- Wheat-wheatgrass blends
- High protein
- Unique flavor

Intermediate Wheatgrass: Breeding Goals

- Grain Yield
- Yield Longevity
- Seed Size
- Shatter Resistance
- •Free Threshing
- •Spike traits (length, weight)
- Height
- Lodging Resistance
- Diseases (FHB, Ergot)
- End-use Quality & Food Products

Dr. Pam Ismail

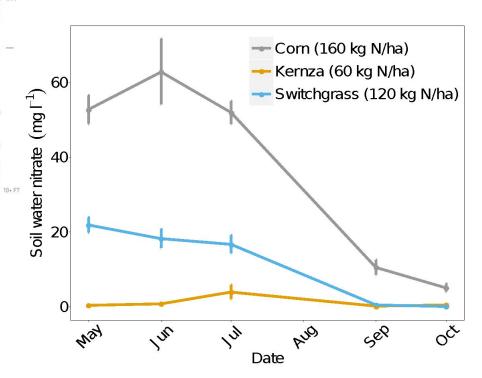

Dr. George Annor

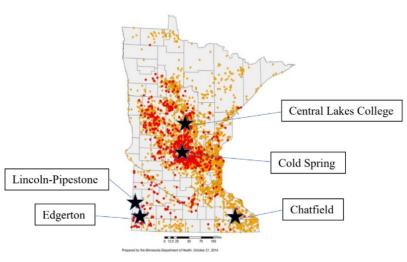


Intermediate Wheatgrass: Genomic Selection

Trait Improvement after 4 Breeding Cycles

Breeding Nurseries

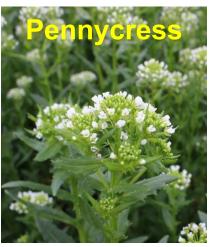

Release of 'MN-Clearwater'

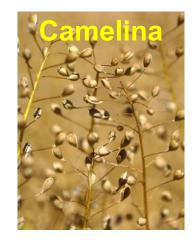


Kernza & Water Quality

Drastic reductions in nitrate leaching potential

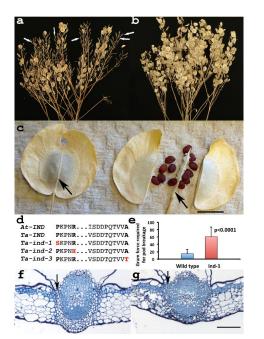
Private wells at risk of nitrate contamination in Minnesota. Credit: Minnesota Department of Health.

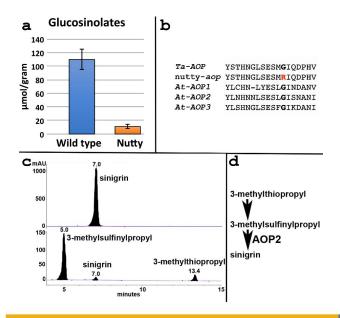

Commercial Forever Green Food Products



Pennycress and Camelina

- Mustard family
 - Produces an oilseed
 - Wild pennycress has a garlic smell and camelina a mustard-like smell
- Extremely hardy winter annuals
- High yielding, high oil content
- Food and Industrial uses
 - Pennycress:
 - industrial oil
 - edible with reduced erucic acid and glucosinolates
 - Camelina:
 - industrial oil
 - edible heart healthy oil
 - High protein meal for feed and human food use



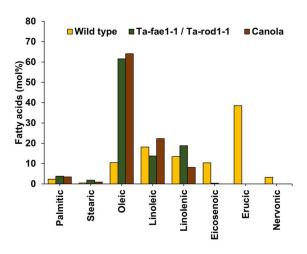


Domestication of pennycress as an oilseed crop

Reduced Seedpod Shatter: Increased Yield

Reduced Anti-nutritional Glucosinolates: Better for Animal Feed

news & views


AGRICULTURAL GENETICS

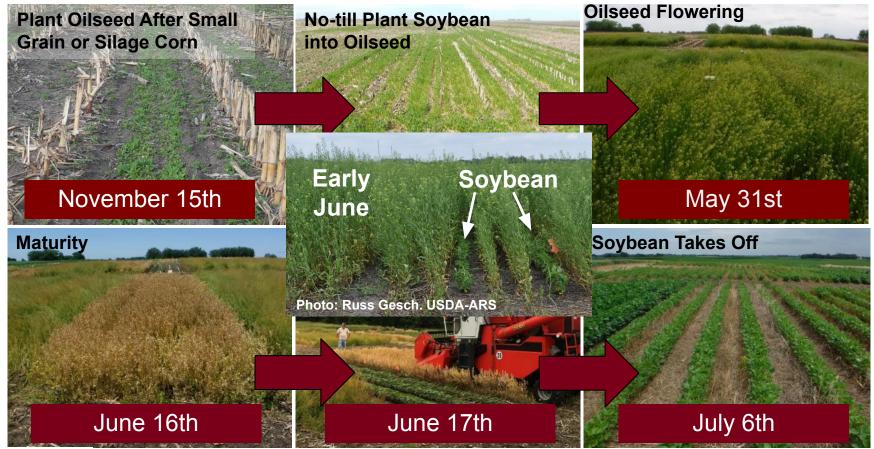
From stinkweed to oilseed

Up to now, creativity, ingenuity, time and more than a little luck have been essential for transforming a wild plant into a new food crop. Building on the understanding of gene function in Arabidopsis, the process of domestication can be rapidly accelerated.

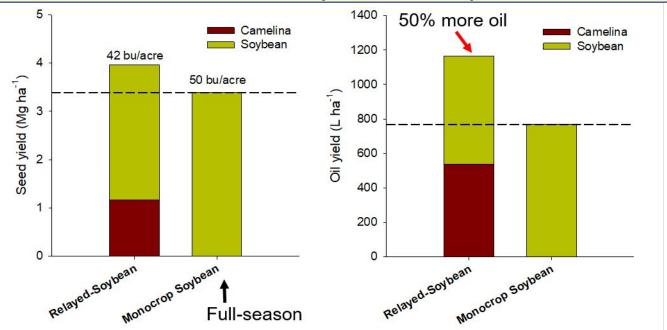
Anne B. Britt

Reduced Erucic and PUFAs: Now Similar to Canola

Identification and stacking of crucial traits required for the domestication of pennycress


Ratan Chopra¹, Evan B. Johnson¹, Ryan Emenecker¹, Edgar B. Cahoon², Joe Lyons³, Daniel J. Kliebenstein⁶, Erin Daniels¹, Kevin M. Dorn¹, Maliheh Esfahanian³, Nicole Folstad¹, Katherine Frels⁵, Michaela McGinn¹, Matthew Ott⁶, Cynthia Gallaher⁷, Kayla Altendorf⁶, Alexandra Berroyer⁵, Baraem Ismail⁷, James A. Anderson⁶, Donald L. Wyse⁶, Tim Ulmasov³, John C. Sedbrook⁶ and M. David Marks¹

Oilseed-Soybean Cropping System: Overview

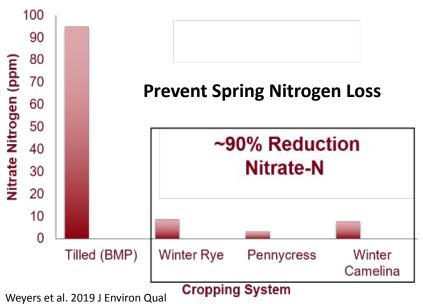

Oilseed-Soybean Cropping System: Overview

Oilseed-Soybean Cropping System: Productivity

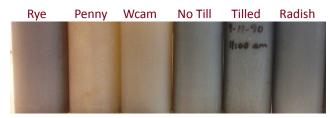
Higher total grain and oil production when winter camelina is relayed with soybean

Research Objectives in Corn-Soybean System

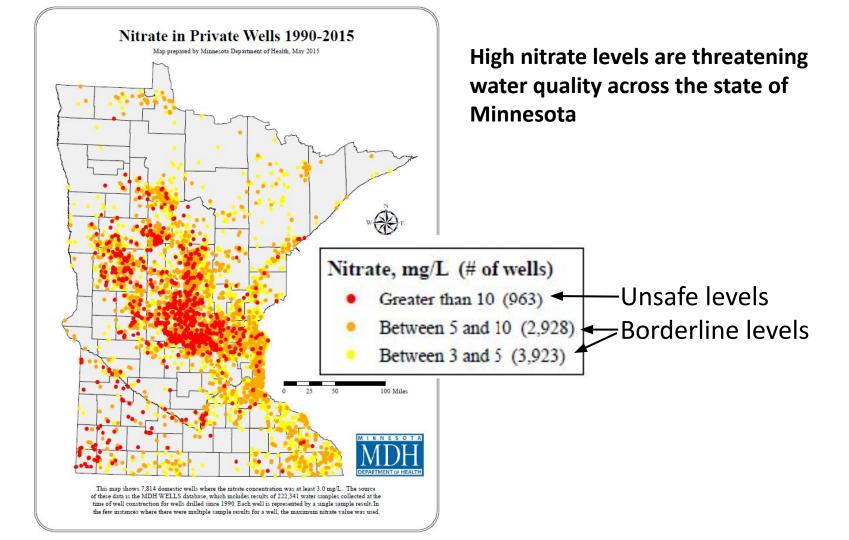
- Develop BMPs for establishing pennycress and camelina in grain corn systems
- Evaluate ecosystem benefits from integrating pennycress and camelina into corn-soybean systems



Oilseed Cropping System: Ecosystem Services



Reduce Soil Erosion:


Lighter Color = Less Sediment

Weyers et al. 2020 J Environ Qual

Oilseed Markets for Camelina and Pennycress:

Oil for Low-Carbon
Jet Fuel and
Renewable Diesel

Vegetable Oil for Cooking

Meal for High-Protein
Food and Feed

Support Needed to Make the Forever Green Initiative Successful

- Support research and development of FGI crops and associated end-use products
- Support development of markets and supply chains for FGI crops and associated end-use products
- Support supply chain actors (companies) that are working to scale up each FGI crop

S.F. 1314: Critical Funding for the Forever Green Initiative

Mitch Hunter, PhD

Associate Director, Forever Green Initiative
Adjunct Assistant Professor,
Department of Agronomy and Plant Genetics
University of Minnesota

<u>mhunter@umn.edu</u>
651.675.7380

Bill Overview

- Targeted support
- \$2 million per year of base research funding
- One-time \$10 million investment in equipment and infrastructure

Base Research Funding

- \$2 million per year
- Establish long-term stability
- Top priorities:
 - Stabilize soft-funded breeders
 - Maintain expertise in trait discovery
 - Support management of the initiative
- Also support graduate students, post-docs, technicians and other research expenses

Equipment and Infrastructure Funding

- One-time, \$10 million investment
 - The need exceeds \$20 million
- Address critical gaps for our key disciplines
- Identify highest priorities through competitive grant process
- Long-term enhancement of research capacity within FGI and CFANS

Equipment and Infrastructure Funding

Outcomes:

- Faster progress toward our goals
- More efficient use of other public research dollars
- More opportunities to leverage federal and private funds

Examples: Equipment and Infrastructure Needs

Lab Equipment

Food Science Equipment

